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Fig. 1: We present WHIRL, an efficient real-world algorithm for one-shot visual imitation in the wild. WHIRL is able to directly learn from
unstructured human videos and generalize to new tasks as well. Videos and webpage at: https://human2robot.github.io

Abstract—We approach the problem of learning by watching
humans in the wild. While traditional approaches in Imitation
and Reinforcement Learning are promising for learning in the
real world, they are either sample inefficient or are constrained
to lab settings. Meanwhile, there has been a lot of success in
processing passive, unstructured human data. We propose tackling
this problem via an efficient one-shot robot learning algorithm,
centered around learning from a third person perspective. We
call our method WHIRL: In-the-Wild Human Imitating Robot
Learning. WHIRL extracts a prior over the intent of the human
demonstrator, using it to initialize our agent’s policy. We introduce
an efficient real-world policy learning scheme that improves
using interactions. Our key contributions are a simple sampling-
based policy optimization approach, a novel objective function for
aligning human and robot videos as well as an exploration method
to boost sample efficiency. We show one-shot generalization and
success in real world settings, including 20 different manipulation
tasks in the wild. Videos at https://human2robot.github.io.

I. INTRODUCTION

In recent years, there has been significant advances in robot
manipulation: from grasping to pushing and pick/place tasks [2,
36, 23]; from manipulating a rubik’s cube [1] to opening
cabinet doors or makeshift doors [60, 49]. While there has been

substantial progress, most experiments in this area have still
been restricted to simulation [37, 4, 71] or table-top experiments
in the lab [31, 11]. We ask a basic question as to why hasn’t
this progress transferred to manipulation in the real-world
setup and why do we still see most experiments in lab setups
or simulations? Although there have been efforts to perform
grasping in home setups [19, 69], general manipulation is still
studied in either simulation or lab-like settings.This work delves
the question of how we could move from from lab experiments
to more in-the-wild setups.

We believe the biggest bottleneck for learning manipulation
in the wild is the lack of scalable and safe frameworks.
Traditionally, designing a controller or policy for manipulation
tasks requires learning via reinforcement (RL), which can be
data-hungry and unsafe especially in the real world. While RL
has had success in simulated tasks, real world tasks do not have
structured rewards, thus making the problem that of sparse
search. A popular alternative is to use imitation learning (IL)
based approaches, but common IL approaches rely on lots of
kinesthetic or teleoperated demonstrations per task. However,
this data can be expensive to obtain in the real world and may
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Fig. 2: Our method (WHIRL) provides an efficient way to learn from human videos. We have three core components: we first ”watch” and
obtain human priors such as hand movement and object interactions. We ”repeat” these priors by interacting in the real world, by both trying
to achieve task success and explore around the prior. We ”improve” our task policy by leveraging our agent-agnostic objective function which
aligns human and robot videos.

not be generalizable to new settings or different robots. There
have been attempts at one shot imitation at inference, but these
methods requires thousands of demonstrations or interactions
during training [12, 16, 46].

To move towards general robot manipulation out of the lab
and tabletop settings, we believe visually imitating humans
provide a safe and scalable alternative. Rather than asking
humans to teleoperate, robot should observe humans to learn
as they interact in the world. Humans provide a rich source of
data as they often act in interesting and near optimal ways given
a task or an environment. In the visual imitation framework,
the agent observes other agents perform action without access
to actions (just the pixels). This data is then used to guide
their own exploration and learning. However, there are several
challenges in making visual imitation learning work: first, there
is the issue of embodiment mismatch (robots and humans are
different agents and have different bodies). Second, there is no
access to actions from humans, which have to be inferred. Third,
there is no access to task information including rewards beyond
pixels. Current approaches use end-to-end learning [65, 78, 67]
which requires a lot of samples during training and are hence
restricted to lab/simulation settings.

In this paper, we propose to revive this visual human-
imitation framework to move robot manipulation out of the
lab and into the wild. Instead of learning end-to-end from
scratch, we propose leveraging advances in computer vision
and computational photography to (a) infer a trajectory and
interaction information from the human, thus obtaining a prior;
(b) learning an improvement policy via interactions in the real
world; and (c) bridging the embodiment gap between human
demonstrations and robot videos. But above all, we only use
imitation data as priors for our policy. Naively using priors
will not result in success due to a host of issues, e.g. varying
morphologies or inaccuracies in detections. It is crucial to
interact with the real world to learn generalizable manipulation.
We introduce a sampling based optimization framework, similar
to the Cross Entropy Method (CEM), in order to iteratively
improve the interaction policy. To make WHIRL operate
without supervision, we introduce an agent-agnostic alignment

objective function for the described optimization approach.
In order to not be too restricted by the prior, we employ a
novel task-agnostic exploration policy which allows the agent
to sample new and interesting actions. This all leads to an
efficient framework for manipulation tasks in real world.

We demonstrate our framework on 20 different tasks in
3 different environments. We show one-shot, in the wild
generalization and success in various real world settings,
including manipulation tasks such as opening and closing doors
or fridges, putting objects in shelves, folding shirts, cleaning
white boards, opening taps and a variety of other tasks. We
analyze our approach thoroughly in terms of task success,
generalization, and performance compared to state-of-the-art
baselines. To the best of our knowledge, this is the first effort
that takes robot manipulation out of the lab and into the real
world at this scale.

II. RELATED WORK

A. Detecting Humans

The field of computer vision has studied the problem of
detecting humans in a wide variety of approaches. Most such
applications are contained in the domain of graphics, but many
have applications in real world robotics as well. There are
many possible uses of such, for example modeling human
bodies, detecting poses, inferring dynamics or understanding
interactions between humans and the world. From a modeling
perspective, works such as MANO [53] and SMPL [35]
have proposed analytical models of human hands and bodies
respectively. Hand and body pose estimation [72, 24, 54]
can be useful in the context of robotics, as it can allow for
spatially grounding a demonstration, which is something that
we leverage in our approach. Estimation and detection of
humans, while useful, does not help in understanding what the
human is doing. For this, large annotated video datasets can
help detect and infer human actions, such as the Something-
Something [18], YouCook [10], ActivityNet datasets [14] or
the 100 Days of Hands [62] (100DOH) dataset. 100DOH [62]
is particularly useful as it contains object level interaction
annotations. WHIRL aims to remain as general as possible in



terms of the human prior used, using only object interaction
data. We employ both the models from Rong et al. [54] and the
hand-object detector from Shan et al. [62] for estimating hand
position and interaction information. It is possible to combine
WHIRL with stronger priors for human hands, for example,
building a knowledge graph of objects and functional grasps
[39] or using heat sensing [3] to understand interactions.

B. Imitation and Reinforcement Learning from Videos

Learning From Human Videos A large field of robot
learning (Learning from Demonstrations: LfD) is focused on
learning from expert demonstrators [44, 50, 48, 55]. However,
most of the work in this area tackles the problem of learning
from demonstrations that humans provide directly to the robot
via kinesthetic teaching or teleoperation. This is an expensive
way to gather data for teaching robots. On the other hands,
videos of humans perfoming daily activities are widely available
on the internet and can provide good semantic supervision
for robotics tasks. However, extracting the right knowledge,
for example aligning human videos with robot videos, is
challenging. One solution is to learn a direct correspondence.
The use of paired human and robot data [65, 64, 33] is a
common approach in this line of work. For example, Sharma
et al. [65] aim to learn to produce subgoals in the robot’s
perspective, conditioned on a human video. Liu et al. [33] seeks
to learn a translation model based on the paired demonstrations
directly. Collecting paired demonstrations is challenging, and
only a limited amount of data can be collected. Thus, previous
work [67, 79] has employed cycle-consistency [82, 13] to
learn an unsupervised pairing. Similarly, Sermanet et al. [59]
uses a contrastive loss between frames close to and far away
from the anchor point in the video, in order to obtain a
representation. Sermanet et al. [60] trains a classifier using
human demonstrations, which is then used to build a reward
function. Unsupervised methods can learn a translation model
for single tasks, however they have to be trained in every new
setting, which is time consuming. Most such approaches require
many random interactions to learn representations, and this
process often yields unstable models [67]. WHIRL, on the other
hand, does not need any random data to learn representations,
and can work with even a single demonstration, in a variety
of in-the-wild settings.

Offline Videos and Datasets Instead of using human videos,
recent approaches have attempted to employ a reacher-grabber
tool as the demonstration collection device [69, 77, 43]. These
approaches have the advantage of having a smaller domain
gap between robot and human actions, since the videos are
in first person view. However, such a setup limits the number
of tasks that are achievable, and adds considerable effort in
collecting the data, since the approaches are not able to use
large-scale human datasets, for example Youtube videos. On
the other hand, advances in many computer vision tasks such as
action recognition [80, 18, 20, 5, 73, 15], video understanding
[15, 32, 34] or self-supervised representation learning [21, 42,
8, 41] have leveraged videos collected offline. These video
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Fig. 3: We perform various experiments in the wild. We select a
subsample of tasks, as shown above, to perform a thorough study
of our WHIRL as well as baselines and ablations. These tasks are:
drawer, door and dishwasher opening and closing.

datasets include the Something-Something [18], Epic Kitchens
[9] or ActivityNet datasets [14]. These can provide important
semantic information as well a high amount of visual and task
diversity, which can aid in generalization. Similarly, works such
as Chen et al. [6] and Shao et al. [63] find that using a large-
scale human datasets, augmented with a few demonstrations
from the robot as well as task labels, can help learn a semantic
action classifier which generalizes to new tasks. Unlike these
approaches, we do not use any task labels or robot specific
fine-tuning for the feedback module. Embedding task specific
knowledge into reward classifiers does not scale to in-the-wild
settings, contrary to our approach.

Learning Action Policies from Priors While learning
reward functions and representations from offline videos can
be useful in robotics, videos of humans contain stronger priors.
Learning keypoints [7, 27, 75] or object-level [47, 58] from
videos, and using these as input to a control policy has been
shown to be useful for certain tasks, but requires knowledge of
the task and careful design, for example knowing the number
of objects or keypoints. This can be a limiting factor when
trying to scale to a general robot setup. Previous approaches
have also used hand [29, 40] and object tracking [76] to learn
action policies, however, these have been limited to simple
settings and require very structured planning algorithms that
are task specific. Our approach on the other hand is flexible and
works for almost any manipulation task. Previous approaches
do not perform any iterative improvement, contrary to WHIRL.

III. HUMAN-TO-ROBOT VISUAL IMITATION IN THE WILD

We address the challenge of learning from humans by
extracting priors from observing their actions, leveraging the
priors to learn an interaction policy in the real world, and
exploring around the prior in an efficient manner. We build
a general robot learning algorithm that can work in many in-
the-wild settings. We call this approach WHIRL: In-the-Wild
Human Imitating Robot Learning. In this section, we describe
how WHIRL works.

A. Human Priors

1) Extracting Human Priors
Most trajectories (τ ) of interest for manipulation tasks can

be broken down into smaller sub-trajectories: τpre-interaction,
τinteraction and τpost-interaction. Throughout the paper, we refer
to these as primitives. A more complex task can be thought



of as a composition of such primitives. Once we are able to
use human videos to estimate these primitives, we can try to
deploy these on a robot, despite any differences in morphology.
Videos of the desired task (V ), such as door opening, are used
to obtain this trajectory parameterization. The key components
of a video of a human performing a task include how the target
is moving as well as where and when the interactions happen.
We describe how we infer this information from third person
videos below.

Extracting Hand Information We process each individual
frame Vt of the video (V ) at timestep t to obtain an estimate
of the position of the hand: xt, yt, zt. We obtain this pose
using the 100DOH detection model [62], built on top of Faster-
RCNN [51] and trained to output hand bounding box (bt). This
is a continuous vector of coordinates in image space. The hand
position (in the camera frame) is referred to as ht. In order for
the robot to grasp and interact with an object, the orientation
of the wrist and the force applied on the gripper are important
as well. We use the MANO [53] parameterization of hands
in order to obtain these. Specifically, we use the part of the
parameterization that describes the rotation of the wrist, θ(t)hand.

Extracting Interaction Information Inferring the position
of the hand can give useful information, but we also need
to understand when the hand interacts with an object. De-
tecting contact is important in determining τpre−interaction: it
determines where the interaction occurs. Thus, we employ the
100DOH [62] model to detect when this interaction occurs.
We use this information and previously computed hand poses
to extract waypoints for the robot. Specifically, we use the
100DOH model to obtain a discrete valued contact variable:
ct. This represents a possible contact that might be occurring
at frame t of the video. The possible options are: no contact,
contact with portable or fixed object, and self contact. However,
since out-of-the-box detections in unstructured settings can be
noisy, we employ the Savitzky–Golay [57] filter for smoothing
ct across timesteps. Using smoothed detection ĉt we determine
the time-step where the interaction started in the video: tinteraction
and when it ended: tend. We denote the hand position at these
timesteps as hinteraction and hend. In order to not overfit to the
detections, we in fact sample from a distribution centered
around the start and end points. We also sample intermediate
trajectory waypoints, hmid. We additionally use a simple binary
representation of a grasp, determined from the contact variable
ĉt.

Overall, our extracted prior from a video demonstration from
a human can be described as a set of interaction waypoints:
hinteraction, hmid, and hend, a grasp or interaction orientation
measure θhand, and commands to close or open the hand: o1:T
(where T is the length of the video). Figure 4 shows the
different parts of the human prior we use. Note that some tasks
may require a more densely sampled set of waypoints. For
simplicity we think of hmid as a single point, but it can be also
a set of midpoints in the hand trajectory.

(a) Detection (b) Interaction (c) Direction

Fig. 4: We show the different components of the human prior. First
we extract the position of the hand and possible object interactions
(a). This indicates a possible area of interaction (b) and direction for
moving the robot hand (c). We project these to the robot’s action
space and execute the trajectory.

2) Converting Human Priors to Robot Priors
Once we obtain the desired trajectories from human videos,

we can convert them into the robots frame and obtain desired
poses, using depth image (dt) from the external camera. Our
setup uses a depth image, but is compatible with any 3D pose
estimation approach. Given a video Vk of length T , we then
project the obtained priors, hinteraction, hmid, hend, θhand, o1:T
to the robot’s frame via 3D pose estimation from depth data.
For both the gripper open and wrist orientation parameters,
we use a robot-specific heuristic function, as every robot’s
coordinate axis is different. Let the detected waypoints be
h = hinteraction, hmid, hend. This process can be described as:

fmap(h, θhand, o1:T ) = winteraction, wmid, wend, θYPR, g1:T ≜ Ψk

where w are waypoints in the robot’s frame, θYPR is a wrist
rotation (yaw-pitch-roll format) in the robots frame, and g1:T
are robot gripper open/close continuous parameters. We refer
to this vector by Ψk.

B. Policy Learning via Interaction

Human priors from videos can give a rough guideline on
how to perform the task. They are useful because they can
be distilled into a neural network policy, which can possibly
generalize beyond the training data. However, directly executing
the prior on the task will not generally lead to success, due to
differences in morphologies between human and robot hands,
inaccuracies in detections, or errors in the calibration process.
Thus, we need to learn a policy via real world interaction in
order to succeed at this task. Such a learning procedure must
have 3 important properties:

• The real world interactions must be safe.
• While safe, the interactions must not be too restrictive.
• This process must be sample efficient.
The safety of the interactions can be ensured by the human

prior. Following the prior, even one that has errors, will lead
to somewhat reasonable behavior, and is very likely to be safe.
However, being too close to the prior will restrict the reach
of the policy, and thus it will be unable able to solve the task.
In order to address this challenge, we employ a task policy
which aims to solve the task and a task agnostic exploration
policy that explores around the human prior so that we do not
fall into a local minimum. We describe the objective functions
of these policies in the following sections. Finally, in order to



ensure the learning process is sample efficient, we introduce a
simple and easy to use zeroth order real world optimization
procedure (similar to CEM). Since our goal is to efficiently
perform many manipulation tasks in the wild, traditional RL
methods are infeasible. A summary is in Algorithm 1.

Algorithm 1 Training Procedure for WHIRL

Require: Task videos: V1:K , fmap: video to robot actions
function, prior task and exploration policies: π, πexp. Video-
level (Φ) and frame-level (Φf ) agent agnostic representation.
M real world interactions per task.
while not converged do

for k = 1...K do
Ψk = fmap(Vk)
for m = 1...M do

Sample ∆Ψk,m = πexp(Vk,Ψk) (prob: p)
Sample ∆Ψk,m = π(Vk,Ψk) (prob: 1− p)
aj,m = Ψk +∆Ψk,m

Execute ak,m, collect video: Rk,m

end for
end for
for j = 1...K do

rank Cost(Φ(Rk,m),Φ(Vk)) for every m
pick E = {elite examples}
fit π(.) as a VAE to Ψk,m ∈ E
pick Eexp = {Φf (Rk,m) with highest ”change”}
fit πexp(.) as a VAE to Ψk,m ∈ Eexp

end for
end while

1) Policy Structure
When trying to achieve the desired task via interaction, it

is easy to simply get stuck in the local minimum around the
prior. Thus we not only need to train a task policy, but an
exploration policy as well.

Task policy We would like to learn an interaction policy
which will allow the agent to achieve the task. Given prior
Ψk extracted from video Vk, we propose learning a (task and
exploration) policy π(Ψk, Vk) = ∆Ψk, outputting the residual
to the prior. Residual learning is common in robot learning
[22] as it allow for the policy to search around the prior in
order to avoid unsafe behavior. Using this residual structure
also allows the policy to initialize close to the human prior,
and then explore from the prior as a starting point. Both of
our policies are neural network based. The task policy π will
try to maximize the robot’s performance with respect to the
demonstration video.

To be able to sample around the prior, the policy needs to
learn a distribution and not just a mean prediction. For a single
human video, there are multiple different ways a robot can
perform the task. A naive stochastic neural network policy
would not be able capture this multi-modal distribution and
hence has difficulty in generalizing to new videos. We leverage
Variational Auto-Encoders (VAEs) [26, 52] which are popularly
used to capture multi-modal distributions. In particular, we fit

a Conditional VAE [68] to learn a mapping from a set of
samples ∆Ψk,m and an embedding of the input demonstration
video ϕ(Vk). We condition the distribution on the video, Vk

and learn to encode the prior residuals. The encoder, q(z|c, x)
takes input x = ∆Ψk,m, and c is an embedding of the human
video ϕ(Vk). The decoder p(x|z, c) takes a latent sample from
p(z) as well as the human video embedding. At inference
time, we can use the policy, π to output ∆Ψ̂k (the residual),
conditioned on video ϕ(Vk) and latent z ∼ N (0, 1), where
π = p(x|z, c). Since this policy is conditioned on an input
video, with enough collected data it is able to generalize to
new human demonstrations as well.

Exploration Policy On the other hand, the exploration
policy will try to explore around the prior. Many methods
of exploration have been studied in literature, for example
intrinsic motivation [45], or maximizing state coverage [17].
Instead, our exploration policy, πexp, aims to maximize the
change that the agent causes in the environment. Since our
actions are close to the prior, it is likely that any changes
caused by the agent in the environment will be meaningful
and not destructive. Mathematically, for a given video Rk this
can be described as:

ck = max
i,j

||Φf (Rk,i)− Φf (Rk,j)||2 (1)

where i and j are different frames of the video and Φf is
a frame-by-frame embedding of the video. This exploration
policy uses the same exact inputs and setup as the task policy,
as well as the CVAE architecture.

As the robot interacts with the environment, we want the
task policy to improve to achieve more success. Thus, we need
to have a notion of how good the robot is doing compared
to the target human video. Given that human and robots have
different morphologies, and perform tasks differently, how do
we create a representation space for our objective function?

2) Representations for Human-to-Robot Video Alignment
Trying to learn correspondences between human and robot

videos can be a challenging task. Prior works [65, 61, 67, 60]
have attempted to achieve this via learning paired or unpaired
videos from a single scene to learn a joint embedding. This
would not scale to large set of in-the-wild manipulation tasks
described in Figure 1. Instead of trying to learn a tight coupling
between human and robots, we aim to get a comparison between
human and robot video at a high level. We postulate that the
effect that the agent had on the environment is more important
than how the agent moved, since that can vary with different
morphologies. We embed both robot and human videos into
a space that is agnostic to the agent. We find that inpainting
both human and robot from the video allows us to do so. We
employ Copy-Paste Networks [30], which, given a mask of an
agent, trains a network to copy information from other video
frames and inpaint the area masked out. An example of this
procedure can be seen in Figure 5.

Only inpainting the human out of the video is not enough
to compare the two semantically, since the videos might be



(a) Robot Image (b) Robot Inpainted (c) Human Image (d) Human Inpainted image

Fig. 5: We show a sample of our agent agnostic representation, using the video inpainting method by Lee et al. [30]. An image of a human
performing the task is shown in (c) and (d) shows the human inpainted from the image. Similarly for the robot, (a) and (b) show the original
and inpainted images. We train segmentation models [74, 51] to obtain human and robot masks.

of different lengths, different speeds or may have other minor
differences. Advances in action recognition [80, 18, 20, 5, 73,
15] have allowed models to determine if two videos which may
look different are performing the same task. We use such an
action recognition model from Monfort et al. [38], trained on
large-scale passive data. This model takes in an entire video,
and outputs an embedding. We call the composition of the
action recognition model and the inpainting model our agent-
agnostic representation. We denote this with Φ. Using this
agent-agnostic representation, human video V and robot video
R, our objective function is the distance:

|Φ(V )− Φ(Rk)||2 (2)

We use this function to train the task policy. The exploration
policy objective (Equation 1) which is to maximize ”change”
leverages frame-wise version of Φ, denoted by Φf . In order to
increase robustness, we sample costs over multiple embeddings
with different video-level augmentations. Given a good way
to align robot and human videos, how do we optimize our
policies in a sample efficient way?

3) Sampling-based Optimization Procedure
RL methods have shown promise in learning by interaction.

However, they remain too sample inefficient for large scale
robot learning in unstructured settings. Instead, we propose a
simple zeroth order sampling based alternative, in a similar
fashion to CEM [56]. In our sampling procedure, we initially
extract the prior from a third person human video Vk, and
samples residuals:

∆Ψk ∼ N (0, σ2)

We execute these M samples Ψk,m + ∆Ψk,m in the real
world, and capture resulting videos Rk,m. We aim to fit π
to the best performing samples. We repeat this process till
convergence. In the following iterations, instead of sampling
only from N (0, σ2), we sample from π as well. Using the
objective (agent-agnostic) functions described above, we rank
trajectories based on these costs and fit the policy to the 10
highest ranking ∆Ψk,m. This set, E, is the set of ”elites” in
CEM. The result of this procedure are trained exploration and

task policies. We provide an overview in Algorithm 1.

IV. EXPERIMENTAL SETUP

A. Experimental Details

Hardware In order to perform manipulation in the wild, a
mobile robot is needed. Thus, we use the Stretch Robot [25].
This is a mobile base with a 6 dof arm and gripper. Pictures of
the hardware setup can be seen in Figure 3. We use a Cartesian
position control to command the translation of the wrist, and
an in-built orientation controller for the rotation. The default
gripper comes with suction cups as fingertips. Our setup uses
an Intel Realsense D415 depth camera.

Environment and Data Collection We perform experiments
on every-day objects and settings, for example drawers,
dishwashers, fridges in different kitchens, doors to various
cabinets. Data collection is performed in various in the wild
settings. Each of the tasks presented in Figure 6 was trained
over three demonstrations. Our setup involves 20 tasks seen in
Figure 1 and in the Appendix.

B. Baselines and Ablations

Our method relies on several key ideas, such as policy
learning from interactions, the high-level video alignment to
compare robot trajectories and human demonstrations, and the
task-agnostic policy we use. We test both the performance and
sensitivity of WHIRL to design choices. We compare against
several state-of-the-art baselines. Performing RL in the real
world is infeasible [81] for our large set of tasks and in diverse
settings. Thus we compare against offline RL, which learn
interaction policies from data, and do not interact with the
environment at training time. We modify a SOTA method in
offline RL, Conservative Q-learning (CQL) [28] to work with
our extracted human priors. The policy predicts the residual
to the prior, just like ours, even using the same inputs as well.
The reward function used is the negative L2 error between the
3D ResNet [15] embedding of target and robot videos. This
baseline is trained with same number of samples as WHIRL
(30 samples x 2 training iterations). We call this approach
CQL. We also train CQL with the same objective function as
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Fig. 6: We present results of our thorough investigation of WHIRL on various kitchen tasks such as drawer (a), door (b) and dishwasher (c)
opening and closing, a task involving picking and placing different objects into shelves (d). We test multi-task policies (e) trained on a subset
of the tasks and generalization between tasks (f). We report training and testing success rates (out of 1) for 3 iterations of training.

WHIRL (agent-agnostic). We call this baseline CQL-ours.
We compare against competing SOTA approaches for learning
joint human and robot embedding spaces. We train a Time
Contrastive Network (TCN) [61] to extract a representation
from human and robot videos. We call this baseline CQL-TCN.
The reward used for CQL is the the distance (between human
and robot videos) in TCN embedding space. Similarly, Cycle-
GAN [82] has been shown to be useful translating robot and
human demonstrations [67]. In the same fashion as Smith et al.
[67], we employ Cycle-GAN representations (trained on both
human and robot videos) as an embedding space for the reward
function. We refer to this baseline as CQL-CycleGAN. Finally,
we compare to an off-the-shelf implementation of Behavior
Cloning (BC). This approach is similar to WHIRL, however is
without iterative refinement. A key difference is that the policy
is trained with a standard L2 loss on the output actions, unlike
our VAE-based policy.

V. RESULTS

We evaluate WHIRL in various real world, in-the-wild
settings in order to answer the following questions:

• Can WHIRL work for a large set of in-the-wild robot
manipulation tasks?

• How can we use WHIRL to generalize to new scenes,
objects and settings?

• How much do the individual components (i.e. policy
learning and agent agnostic cost function) of WHIRL
help?

• How does WHIRL compare agents SOTA approaches?

We attempt to answer these via various experiments on in-the-
wild tasks, analyzing generalization capabilities of WHIRL on
a few tasks, comparing to competing methods, and addressing
the question of the importance of the individual components of
our method, such as iterative improvement, our agent-agnostic
objective and the exploration policy. In Figure 6 we present the
results of our experiments on four tasks: opening and closing
a drawer, door and dishwasher, as well as placing different
objects in shelves. The setup is as described in Section IV.

A. Robot Learning in the Wild

We provide results on a large set of 20 tasks, ranging from
turning on a water tap to folding a shirt. Images of these tasks
can be seen in Figure 1 or in the Appendix. We show that
WHIRL is able to to scale to a wide variety of tasks that
involve large fixed objects such as fridges, or smaller rigid
objects such as our ball-in-hoop task, or handling soft objects
such as our shirt folding and whiteboard cleaning tasks. We are
able to train these in only a few hours, in diverse locations and
settings. We provide videos of these tasks in the supplementary
material and at https://human2robot.github.io.

B. Evaluation and Comparison to Baselines

Tasks We perform a drawer opening and closing task
in a kitchen. We report results averaged across three human
demonstrations on two drawers (Figure 3a), and 3 iterations
of WHIRL. Similarly to the drawer task, we perform a door
opening and closing task. Figure 3b shows the task setup. We
train on two doors and test on the third one. We perform 3
iterations of WHIRL. The third task involves opening and

https://human2robot.github.io


closing a dishwasher, as shown in Figure 3c. Due to a lack of
dishwashers in the kitchens, we only train on one dishwasher,
and test on a held-out dishwasher in a different scene. For
the fourth task we train a policy for picking and placing four
objects in three different shelves. These objects vary in size and
shape (bottles, cans, etc.). We provide a single demonstration
for each object. We test on two held-out objects and a held-out
shelf placement (starting point is top shelf and goal is middle
shelf). Details about the task can be found in the Appendix.

Training Evaluation We look into the (training) results
running WHIRL on the various tasks described above. In
Figure 6a, we show a learning curves of success rates over 3
iterations of WHIRL for the drawer task. The training curve
(red) shows an increase from about a 43% success rate to
83% success rate after two iterations. The initial success rate
is the success rate of the prior. We see a clear improvement
during training with WHIRL. For the door task (Figure 6b,
red), the training curve shows an increase in performance from
about 40% success to 92 % success, indicating that WHIRL
is able to learn to improve iteratively. The training curve for
the dishwasher task (Figure 6c, red) shows that WHIRL also
improves for this task, similarly to the drawer and door tasks.
Figure 6d provides learning curves for the task of picking and
placing objects from shelves. We can see that the the train
(red) curves show improvement. However, we did note that
this task required a lot more precision than the kitchen tasks
presented above, which is why we see the test success rate to
be much lower than the train one. We often found that if the
robot predicted the waypoints incorrectly by even a couple of
centimetres, it would hit a shelf and get stuck.

Comparison to Baselines We compare WHIRL to both
offline RL and Behavior Cloning. We present results of multiple
instances of offline RL in Table I (we report and compare
training results). All methods had the same amount of data
to train on. We report success rates out of 1. Our method
strongly outperforms all the baselines. Offline RL, especially
with smaller datasets, has difficulty in learning without any
online interaction. Learning both actor and critic require data
that covers more of the action space than is likely available in
the wild. Interestingly, CQL-ours tends to outperform other
approaches such as CQL-CycleGan (similar to that presented
by Smith et al. [67]) CQL-TCN (similar to Sermanet et al. [61]),
and CQL [28]. Similarly, Behavior Cloning, which uses our
agent-agnostic cost function to filter the top trajectories, mostly
outperforms the offline RL approaches. This indicates that our
objective function is able to differentiate between good and
bad trajectories in many algorithmic settings.

C. Generalization to New Instances

We also evaluate how well policies trained with WHIRL are
able to perform on new instances of the same task that they were
trained on. In the drawer task, we test the policy on a held-out
drawer. The learning curve for the held-out drawer (Figure 6a,
blue) shows that the achieved success is lower than that on the
training drawers. The detected prior for each demonstration may

Drawer Door

No iterative improvement:

Behavior Cloning 0.53 0.30
Offline RL (CQL-ours) 0.47 0.30
Offline RL (CQL-CycleGAN) [67] 0.23 0.30
Offline RL (CQL-TCN) [61] 0.27 0.20
Offline RL (CQL) [28] 0.33 0.13

No agent-agnotic objective:

WHIRL (ours) 0.47 0.53

No Exploration Policy:

WHIRL (ours) 0.60 0.73

WHIRL (ours) 0.83 0.92

TABLE I: We present a set of evaluations on two real world tasks:
drawer and door. The task is to imitate the third person demonstration
of the human. The results presented our averaged over 30 trials.

have different biases and errors. A policy may not necessarily
transfer as well to a new demonstration without any training,
however, as we see here, we expect improvement as there are
commonalities in the structure of the task. Another common
aspect is the camera and geometry information for both train
and test demonstrations (since the view is the same). For the
door task (Figure 6b, blue), interestingly, the success rate is
higher here than the train one. As discussed previously, we
expect that this is due to the strength of the prior for this
specific door. For the object task, The policy was tested on
two held objects and held out shelf placements. The test (blue)
curves in Figure 6d shows a definite improvement in success
rate over multiple iterations. From these experiments, we see
that WHIRL does have the ability to generalize to new instances
of the same task it was trained on.

D. Generalization to New Scenes:

To analyze how well WHIRL performs in a new scene,
where the calibration and geometry are different, we try the
trained policy on a drawer in a different part of the kitchen.
Note that the camera angle and view also change. The resulting
curve is shown in Figure 6a (purple). We see that similar to the
test curve on the held-out drawer, there is definitely an increase
in the success rate, however, the performance is still worse
than the train drawers. In the case of the door task (Figure 6b,
purple) the performance of this policy in a new setting is
significantly worse, unlike the drawer task,. This is likely due
to mismatches in the train and test demonstrations. Although
the performance is not as strong, there is still an improvement
in success rate from 20% to about 57%. For the dishwasher
task (Figure 6c, blue) we see a strong improvement in the
success rate, similarly to the other two tasks. As expected,
the policy does not perform as well as it does on the train
dishwasher. We see that WHIRL allows for generalization to
new scenes, however, in most cases the performance is worse
than running WHIRL on new instances, most likely due to large
visual changes, as well as different geometry and calibrations.
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Fig. 7: We ablate different aspects of WHIRL. We analyze the need for our task-agnostic exploration policy, as well as our agent-agnostic
representations. (a) is the drawer task, (b) is the door task. In (c) we analyze on the drawer task how our cost functions compare for different
levels of success obtained by a trajectory.

E. Generalization to New Settings:

In order to test the generalization between tasks, we test the
trained policy on a held-out door (Figure 3b), in order to test
the task level generalization. We see a strong performance on
the door, as shown in Figure 6f (red). We see generalization
from the drawer policy to the door task. We suspect that the
final high success rate is due to the fact that the prior for this
specific door was much more accurate than for other instances
or tasks. Nevertheless, we see an improvement on the held-out
door as the policy is trained more, indicating that WHIRL
is able to improve the performance for not only the task at
hand, but also allows for some degree of generalization across
tasks. For transferring the policy trained on the door task to
the drawer task, we see in Figure 6f (blue) an improvement in
performance on the drawer task, similarly to the policy trained
on the drawer task. This definitely indicates that there is some
degree of task-level generalization in WHIRL.

F. Multi-task Generalization

In the previously described experiments, we trained policies
for one task only, even if it was tested on another one. With
this experiment, we aim to answer how training a joint policy
would work. Using a similar approach as described above for
each of the 3 tasks (drawer, door and dishwasher) we train the
same policy π. We test this policy on the same test scenes as
the previous experiments. We present results in Figure 6e. We
can see clear improvement over all the iterations, both in the
training and testing instances. However, the success rates are
lower than policies trained for individual tasks which makes
sense. We see a big increase from the first iteration. This is
likely because there is more data thus generalization becomes
a little easier as compared to individual policies. However, as
more training happens this does not remain the case.

G. Sensitivity of WHIRL

We test the sensitivity of our method to both the inpainting
process and the exploration policy. Firstly, We train WHIRL
without the agent-agnostic representations. Secondly, We also
compare WHIRL against a version which does not use the
exploration policy. In Figure 7 we perform ablations to test
the sensitivity of WHIRL to various components. In previous

experiments, we have seen that the iterative improvement
provides a lot of benefit, as evidence by the increase in
performance over iterations in almost all of the tasks and
scenarios shown in Figure 6, as well as the boost in performance
over offline RL methods, as shown in Table I.

Agent-Agnostic Objective We train our policy without
our agent-agnostic objective function, on both the drawer and
door tasks, as shown in Figure 7a and 7b (purple). We see
almost no gain in success rate from the initial samples from
the prior in either task. This is likely due to the fact that video
alignment models focus too much on the agents, thus the true
top trajectories might not be selected. We conclude that an
agent-agnostic objective is crucial to the success of WHIRL.

Exploration We test a version of WHIRL without our
exploration policy. We see this in Figure 7a and7b, in the
blue curve. While the performance of this version of WHIRL
outperforms the ablation that does not use agent-agnostic
objective, we still see a drop in success rate from the WHIRL
with the exploration policy. This shows that the method can
learn without biasing exploration around maximizing ”change”
in the environment, but it will be slower.

Analyzing our Objective Function In Figure 7c, we show
a bar plot of distances in our agent-agnostic embedding space
for the drawer task. We present the cost for three types of
trajectory. Note that each category is averaged over multiple
trajectories. ”Failure” trajectories completely fail, and the robot
never touches the drawer. ”Partial Success” trajectories open the
wrong drawer or do not open/close the drawer fully. ”Success”
trajectories match the human demonstrations. We see that there
the cost decreases between these three and that there is big
drop between ”Partial Success” and ”Success”. Since the cost is
not close to 0, we expect there to be noise in the measurement
of video alignment. However, empirically we found that our
embedding space was robust enough to differentiate between
successful and unsuccessful trials. In future work, we hope to
train such an embedding space.

VI. CONCLUSION

We propose WHIRL, an efficient real-world robot learning
algorithm that can learn manipulation policies in-the-wild from



human videos. Our method leverages advances in computer
vision to understand human videos and obtain priors such
as hand interactions, movement and direction. WHIRL is
able to efficiently improve in the real world by using our
sampling-based policy optimization strategy and agent-agnostic
representations, as well as our proposed exploration strategy
that maximizes the changes seen in the environment. We
perform a thorough evaluation in terms of absolute performance,
comparison to SOTA baselines, and generalization to new tasks
and scenes on multiple tasks on real kitchens and see strong
results. We show that our method is able to work on 20 different
tasks in the wild (outside lab settings). WHIRL is a first step
towards learning robot skills from watching internet videos. In
the future, we hope to build upon our method to try to solve
tasks without online interactions and human demonstrations,
i.e. directly learn policies from passive offline video datasets
such as YouTube.
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APPENDIX

A. Videos

Videos of our results can be found at:
• https://human2robot.github.io

B. Implementation Details

1) Real Robot Setup
We use use the Stretch robot from Kemp et al. [25]. This

is a robot with a mobile base and a wrist with suction cups
as fingertips. All 6 degrees of the freedom of the robot are
controllable, and we use code provided in https://github.com/
hello-robot to control the robot. To capture videos of humans
and the robot we use an Intel Realsense D415. We obtain
both depth and RGB images from this camera setup. Each
human demonstration takes about 30 seconds. Similarly, each
robot episode also takes 30-45 seconds. Overall training takes
anytime between 4 and 6 hours, including time to compute
inpainted videos (which is the bottleneck in terms of software).

Our real robot tasks are all in the wild (i.e. outside labs).
We perform tasks using everyday objects and in every day
locations such as kitchens etc. Due to torque limits on the
robots, we had to use non-standard objects for some settings,
such as the ball in hoop task, as the robot’s gripper cannot
grasp a heavier and bigger basketball. In Figure 9 we present
a full list of tasks with images. We show details on train and
test objects for our shelf pick-and-place task in Figure 8.

2) Data Collection
Human demonstrations are very easy obtain and each takes

about 30 seconds to collect. The tasks presented in Figure 1
are trained from one demonstration. During each iteration, 30
samples were taken, and we used the top 10 ranking ones to
fit the policy. The Stretch robot [25] took less than 1 minute
per episode, thus around 20 minutes per iteration.

(a) Training Objects (b) Test Objects

Fig. 8: Images of the objects we used in our shelf pick-and-place
task. Objects a-d are train objects, objects e and f are test objects

3) Hyper-parameters and Design Choices
Our policy is a 4 layer MLP, which takes as input an

embedding of a demonstration video as well as the prior.
The output of the policy is the residual to the prior. We
process the human video using an action-recognition pipeline,
using features from state-of-the-art pretrained action recognition
models such as SlowFast 3D ResNets [15]. We train the policy
as a Variational Auto-Encoder, using a KL-divergence loss
with weight 0.0005 to train the model and latent dimension =
4. However, larger latent dimensions work well too, but this

https://human2robot.github.io
https://github.com/hello-robot
https://github.com/hello-robot


(a) Drawer (b) Door (c) Dishwasher (d) Pulling Garbage Bag

(e) Ball in Hoop (f) Cleaning Whiteboard (g) Garbage Can (h) Arrange Chair

(i) Stacking Cups (j) Stacking Dice (k) Fridge (l) Place Hat

(m) Remove Shirt from Hanger (n) Remove Lid (o) Turn Off Light (p) Shelf Pick-and-Place

(q) Fold Shirt (r) Pull Plug from Socket (s) Open Tap (t) Toaster

Fig. 9: Images of our 20 tasks.

should be dependent on the size of the action space for the
robot (which in our case is 13 dimensional). Our exploration
policy is structured in a similar manner. For the human prior,
we use the hand-object interaction detector from Shan et al.
[62]. We employ Copy-Paste Networks [30] for inpainting
humans and robots from videos. We use action recognition
models such as Multi-Moments [38] and SlowFast 3D ResNets
[15] as our representation space (Φ) for aligning humand and

robot videos. Furthermore, for measuring ”change” in the
environment we used features from the VGG16 [66] network.
Our exploration policy uses the same exact architecture. We
use the following video augmentations for our representations:
Salt-Pepper Jittering, Random Crops, Gaussian Blurs, Vertical
and Horizontal Flips). For the hand-object and wrist detection
modules we used default parameters provided by the respective
codebases. To smooth the predictions we used the filter



from https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.savgol filter.html. We used about 200 labeled images of
the robot to train the instance segmentation module, with the
default network sizes from the codebase. All of our image and
video sizes were 640 x 480. For the policy training module, our
optimization approach fits to the top 10 (out of 30) samples.

4) Codebases
We use the following codebases:
• For hand-object detection we use the codebase from Shan

et al. [62] , https://github.com/ddshan/hand detector.d2
• For wrist detection we use FrankMocap [54], https://github.

com/facebookresearch/frankmocap
• For the instance segmentation module we use code

from https://github.com/wkentaro/labelme to label robot
instances, and use code from Detectron2 [74] (https:
//github.com/facebookresearch/detectron2) code provided
in https://pytorch.org/tutorials/intermediate/torchvision
tutorial.html to train an instance segmentation model.

• For the TCN [61] baseline we use code from https://github.
com/kekeblom/tcn

• For the CycleGAN baseline we use code from https://
github.com/Lornatang/CycleGAN-PyTorch

• Our Inpainting model [30]: https://github.com/shleecs/
Copy-and-Paste-Networks-for-Deep-Video-Inpainting

• We use the model from Monfort et al. [38] (https:
//github.com/zhoubolei/moments models) to compute rep-
resentations for our cost functions

• Our offline RL baselines are from Takuma Seno [70]
(https://github.com/takuseno/d3rlpy)

• https://github.com/okankop/vidaug
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